POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

The human factor in crisis management [N2IBiJ1-BiZK>CLwZK]

Course

Field of study Year/Semester

Safety and Quality Engineering 1/2

Area of study (specialization) Profile of study Safety and Crisis Management general academic

Course offered in Level of study

second-cycle Polish

Form of study Requirements

elective part-time

Number of hours

Lecture Laboratory classes Other 0

10

Tutorials Projects/seminars

0 10

Number of credit points

2.00

Coordinators Lecturers

dr hab. inż. Małgorzata Sławińska prof. PP malgorzata.slawinska@put.poznan.pl

Prerequisites

A student beginning this course should have basic knowledge of mathematical statistics, basics of machine operation, basics of technological design, occupational health and safety, ergonomics and psychology. The student should know the general principles of operation of technical facilities and modern concepts of management. The student should be able to recognize cause and effect relationships in the area of broadly understood security and the basics of business continuity management.

Course objective

Providing students with the basics for understanding the theoretical and practical aspects of rational shaping of optimal work safety conditions. Developing knowledge and skills in improving work organization.

Course-related learning outcomes

Knowledge:

- 1. The student knows in depth the methods and theories used in solving the problems of modern safety engineering and crisis management [K2 W03].
- 2. The student knows in depth the design methodology that takes into account the principles of safety and crisis management [K2 W09].

Skills:

- 1. The student is able to properly select sources, including literature, and information derived from them, as well as evaluate, critically analyze, synthesize and creatively interpret this information, formulate conclusions and comprehensively justify the opinion during the presentation of the results of reasearch regarding the human factor in crisis management [K2 U01].
- 2. The student is able to formulate and test hypotheses related to simple research problems characteristic of safety engineering and crisis management [K2_U04]

Social competences:

- 1. The student is critical of his knowledge, is ready to consult experts when solving cognitive and practical problems related to human factor in safety management in organizations [K2 K01].
- 2. The student is ready to initiate activities related to improving safety taking into account human factors in safety management, taking into account pro-ecological solutions [K2_K03].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Formative assessment:

- project classes: assessment of progress in the implementation of the project task (according to the adopted schedule of the project task implementation) taking into account the activity during the classes according to the following scale of points, from 0 to 5: very good from 4.6 to 5; good plus from 4.1 to 4.5; good from 3.6 to 4.0; sufficient plus from 3.1 to 3.5; sufficient from 2.5 to 3.0; insufficient from 0 to 2.4.
- lectures: the acquired knowledge is verified by questions and answers to posed during the discussion focused on current problems discussed in the lecture.

Summative assessment:

- project classes: evaluation of the completed project, taking into account the assessment of progress in the implementation of the project task and activity during project classes, according to the following scale of points, from 0 to 5: very good from 4.6 to 5; good plus from 4.1 to 4.5; good from 3.6 to 4.0; sufficient plus from 3.1 to 3.5; sufficient from 2.5 to 3.0; insufficient from 0 to 2.4.
- lectures: two 15-minute tests carried out during the 2nd and 5th lecture. Each test consists of 3-5 questions (test and open-ended) with different points (on a scale from 0 to 2); the student receives credit after reaching at least 50% of the possible points.

Programme content

The program covers elements of the security system in terms of the human factor in crisis management. It takes into account the human-centric approach in business continuity management.

Course topics

The lecture program covers the following topics:

Aspects of crisis management:

Unreliability of systems security;

Man in the control process;

Models of system safety;

Anthropocentric approach in evaluating the efficiency and reliability of control processes in complex technical-social systems;

Time stress:

Anti-destructive systems;

Fundamentals of information model design;

Interaction design methodology.

Students perform a task structure project in relation to business continuity management for a selected business unit, which includes the following problems:

Description of states related to the security of systems;

Elements of business continuity management;

Diagnosis and monitoring of the operating environment;

Forms of excess in security structures,

Requirements multi-criteria approach to control the level of safety of complex technical objects; Man in the control process;

Optimization of control systems;

Complexity of interaction in the human-technical object team;

Increase in time reserve:

Guidelines for minimizing losses in the aspect of crisis management.

Teaching methods

- Lecture classes: problem lecture with elements of collecting premises and the stage of solving the problem.

The lecture is conducted using distance learning techniques in a synchronous mode. Acceptable platforms: eMeeting, Zoom, Microsoft Teams.

- Project: multi-stage cognitive task.

Bibliography

Basic:

- 1. Sławińska M. Berlik M., Słoniec J., (2021), Occupational Risk Management on the Basis of Accident Scenarios in the Usage Chain, European Research Studies Journal, vol. XXIV, Special Issue, pp. 417-427, DOI: 10.35808/ersj/2273.
- 2. Sławińska M., Wróbel K., (2021). Indicative Method of Human Failure in Sustainable Chain of Custody Management, European Research Studies Journal Volume XXIV Special Issue 5, p. 709-725.
- 3. Sławińska M., Derbich M., Ewertowski T., Król I., Berlik M., (2019), Skuteczność zarządzania operacyjnego na podstawie bazy informacji eksploatacyjnej, Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie, nr 80, s. 235-251.
- 4. Sławińska M., (2019), Ergonomic engineering of technological devices, Wydawnictwo Politechniki Poznańskiej, 129 s.
- 5. Szopa T., (2016), Niezawodność i bezpieczeństwo, Oficyna Wydawnicza Politechniki Poznańskiej, Warszawa.
- 6. Sławińska M., Modeling Ecologic Processes of Production, (2016), Research in Logistics & Production, Vol. 6 No.3, pp. 217-229, DOI: 10.21008/j.2083-4950.2016.6.3.3 (Published Online: 16 July 2016).
- 7. Kępka P. (2015), Projektowanie systemów bezpieczeństwa, BEL Studio, Warszawa, ISBN: 978-83-7798-232-7.
- 8. Sławińska M., Mrugalska B., Information quality for health and safety management systems: A case study, (2015, [in]: Occupationnal Safety and Hygiene III, Edited by Pedro M. Arezes et al. (eds), Taylor & Francis Group, London), p. 29-32, ISBN 978-1-138-02765-7.
- 10. Sławińska M., Butlewski M., Podsystem ergonomiczny jako zasób informacji eksploatacyjnej maszyn, Zarządzanie Przedsiębiorstwem, Nr 3 (2014), s. 34-39, ISSN 1643-4773.
- 11. Sławińska M., Niezawodność człowieka w interakcji z procesem przemysłowym, (2012), Wyd. Politechniki Poznańskiej, Poznań, ISBN 978-83-7775-178-7.

Additional:

- 1. Sławińska M., Reengineering ergonomiczny procesów eksploatacji zautomatyzowanych urządzeń technologicznych (ZUT), (2011), Rozprawy Nr 462, Wyd. Politechniki Poznańskiej, Poznań, ISSN 0551-6528. ISBN 978-83-7775-100-8.
- 2. Będkowski L., Dąbrowski T., (2006), Podstawy eksploatacji, część II, Podstawy niezawodności eksploatacyjnej, Wydawnictwo Wojskowej Akademii Technicznej, Warszawa.
- 3. PN-ISO 45001:2018-06, Systemy zarządzania bezpieczeństwem i higieną pracy. Wymagania i wytyczne stosowania, PKN, Warszawa.
- 4. Ignac-Nowicka J., Rozwój techniki sensorowej jako inteligentna specjalizacja w inżynierii bezpieczeństwa, Systemy Wspomagania w Inżynierii Produkcji, 2016 yadda.icm.edu.pl http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-12d4cfc3-39ac-4e66-bdc9-168cfad7aae6
- 5. Gembalska-Kwiecień A., Narzędzia wspierające rozwój innowacyjnych rozwiązań w inżynierii bezpieczeństwa
- http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-bc776a49-e0d9-4907-b975-3abc25224eaf
- 6. Siudak K., Smal T., Bezpieczeństwo techniczne w przedsiębiorstwie produkcyjnym

https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-3309bf19-2035-4a78-8339-946b149714c3

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,00
Classes requiring direct contact with the teacher	20	1,00
Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation)	30	1,00